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КАКО СУ НАСТАЛЕ ДЕТЕРМИНАНТЕ  
 

Ђорђе Дугошија, Београд 

 

Увод 

 

 За системe линеарних једначина са истим бројем једначина и непо-

знатих који имају јединствено решење постоје формуле којима се  решење 

изражава као функција коефицијената који се у систему појављују. Те фор-

муле  називају се  Крамерова правила (по швајцарском математичару Кра-

меру1) мада су биле познате педесетак година раније лужичком Србину 

Лајбницу2 (1646-1716), једном од утемељивача савремене математике. У 

формулама се појављују функције које су касније назване детерминанте.  

 Крамерове формуле имају велики теоријски значај али су са рачу-

нарске тачке гледишта ефикасне само за системе за малим бројем непозна-

тих.   

 

Линеарни системи са две једначине и две непознате 

 

 Решимо систем линеарних једначина са две једначине и две непоз-

нате 

                                                       𝑎1𝑥 + 𝑏1𝑦 = 𝑐1  
 
                                                       𝑎2𝑥 + 𝑏2𝑦 = 𝑐2. 
 
  Овде су познати коефицијенти 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2, а непознате су  

𝑥 и 𝑦.  

 Ако стране прве једначине помножимо са 𝑏2, а друге са −𝑏1, доби-

ћемо једначине са супротним коефицијентима уз неознату 𝑦:  
 
                                                 𝑎1𝑏2𝑥 + 𝑏1𝑏2𝑦 = 𝑐1𝑏2  
 
                                              −𝑎2𝑏1𝑥 − 𝑏2𝑏1𝑦 = −𝑐2𝑏1. 
 
 Сабирањем по странама, из ових једначина добијамо  једначину која 

не садржи 𝑦: 
 
                                         ሺ𝑎1𝑏2 − 𝑎2𝑏1ሻ𝑥 = 𝑐1𝑏2 − 𝑐2𝑏1.    
 
 На сличан начин, множећи стране једначина система редом са 𝑎2, 

односно  са −𝑎1и сабирањем по странама добијамо 

 

                                         ሺ𝑎1𝑏2 − 𝑎2𝑏1ሻ𝑦 = 𝑎1𝑐2 − 𝑎2𝑐1.   

 
1  Г. Крамер (G. Cramer, 1704-1752) − швајцарски математичар 
2  Г. В. Лајбниц (G. W. Leibniz, 1646-1712) − званично немачки математичар 
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НАГРАДНИ ЗАДАЦИ 

 

Александар Миленковић, Ненад Стојановић 

 
 У рубрици „Наградни задаци” у сваком броју дајемо 20 задатака који 

су подељени у две групе. Задаци из прве групе су подељени по разредима и 

намењени су пре свега ученицима који се такмиче у Б категорији, док су 

задаци из друге групе намењени ученицима А категорије и нису подељени 

по разредима. 

 Позивамо све читаоце да шаљу предлоге задатака које сматрају по-

себно интересантним, као и сугестије које ће нам помоћи при састављању 

рубрике. Такође, позивамо све ученике да на адресу редакције шаљу отку-

цана или читко исписана решења постављених задатака; сваки задатак на 

засебном листу. Исто важи и за предлоге задатака. У наредним бројевима 

часописа публикују се комплетна решења раније постављених задатака, а на 

крају циклуса најуспешнији решавачи се награђују. 
 
 Предлоге и решења задатака слати на адресу: 
 

„Тангента” – за рубрику „Наградни задаци” 

Природно-математички факултет 

Радоја Домановића 12 

34000 Крагујевац 
 

или електронском поштом (искључиво pdf формат) на адресу 
 

tg_nagradnizadaci@yahoo.com 
 
најкасније до 10.01.2026. 
 

 

Прва група 

 

Први разред 

 

М2154. Неда је написала следећа четири тврђења од којих је свако или тачно 

или нетачно. За та тврђења важи следеће: 
 
 (1) Најмање једно тврђење је тачно. 
 
 (2) Најмање две тврђења су тачна. 
 
 (3) Најмање две тврђења су нетачна. 
 
 (4) Најмање једно тврђење је нетачно. 

 
Колико је нетачних тврђења Неда написала? 
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Hello, World! 
Разлагање у суму египатских разломака 

 
Владимир Јанковић, Миодраг Живковић 

Математички факултет, Београд 

 

1.  Увод 
 
 Египатски разломак је разломак коме је именилац природан број, а 

бројилац јединица. Стари египћани су их представљали писањем хијерогли-

фа  изнад броја који представља бројилац, нпр.  = 1

3
,  = 1

10
. За 

представљање разломака 
1

2
, 2
3

 и 
3

4
 користили су специјалне симболе ,  

и . Остатак после одузимања једног од ова три специјална разломка од 

датог разломка представљали у облику суме египатских разломака са 

различитим имениоцима.  

У савременој математици је познат велики број чињеница о разлага-

њу у збир египатских разломака. Њихов преглед се може пронаћи на страни-

ци 

https://en.wikipedia.org/wiki/Egyptian_fraction. 
 

 Наводимо неке од њих: 
  

• У својој књизи Liber Abaci (1202) Леонардо од Пизе, данас познат 

као Фибоначи (Fibonacci), разматрао је између осталих похлепни 

(енг. Greedy) алгоритам за разлагање у збир египатских разломака.  
 

• Ердеш и Штраус (Paul Erdös и Ernst G. Straus) су 1948. године фор-

мулисали хипотезу да се сваки разломак са бројиоцем 4 може 

разложити у суму три египатска разломка, видети [1]. Данас            

је та хипотеза проверена за све имениоце мање од 1017 (видети          

[3]). 
 
 На 12. Летњој конференцији Међународног математичког Турнира 

градова такмичари су могли да раде групу задатака посвећених египатским 

разломцима. Препоручујемо заинтересованим читаоцима да проуче те задат-

ке. Они могу да се нађу на адреси  
 

https://turgor.ru/lktg/2000/egypt.ps.zip. 

 

 

  

https://en.wikipedia.org/wiki/Egyptian_fraction
https://turgor.ru/lktg/2000/egypt.ps.zip
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ПРЕДЛОЗИ ЗА ДРУГИ ПИСМЕНИ ЗАДАТАК  
 

Мирјана Катић 

 

 
ГИМНАЗИЈЕ, СРЕДЊЕ ШКОЛЕ 

  

 I  РАЗРЕД 
Увод у геометрију; подударност троуглова 

 

1. Дат је паралелограм 𝐴𝐵𝐶𝐷 и тачка 𝑀 која припада дијагонали 𝐴𝐶 тако да 

је 𝐴𝑀 ∶ 𝑀𝐶 = 2023 ∶ 1. Изразити вектор 𝐷𝑀ሬሬሬሬሬሬԦ као линеарну комбинацију век-

тора 𝐴𝐵ሬሬሬሬሬԦ и 𝐵𝐶ሬሬሬሬሬԦ. 

 

2. Дат је квадрат 𝐴𝐵𝐶𝐷. Нека је 𝑃 тачка праве 𝐵𝐷, иза темена 𝐷, таква да је  

𝐴𝑃 = 𝐵𝐷. Колика је мера угла 𝐴𝑃𝐷? 

 

3. Један угао правоуглог троугла 𝐴𝐵𝐶 износи 30°, а краћа катета је дужине 

3 𝑐𝑚. Из средишта хипотенузе 𝐴𝐵, тачке 𝑆, повучена је нормала на хипоте-

нузу. Њен пресек са дужом катетом је тачка 𝐷. Одредити дужину дужи 𝑆𝐷. 

 

4. На страници 𝐵𝐶 троугла 𝐴𝐵𝐶 уочена је тачка 𝐷, таква да је 𝐴𝐶 = 𝐵𝐷 и 

𝐴𝐷 = 𝐷𝐶 . Колика је мера угла 𝐴𝐵𝐶, ако је мера угла 𝐴𝐶𝐵 једнака 20°? 

 

5. Ако су две равни нормалне на истој правој, оне су међусобно паралелне. 

Доказати. 

 

 

II РАЗРЕД 

Квадратна једначина; квадратна функција; квадратна неједначина 

 

1.  Одредити 𝑚 ∈ ℝ за које је квадрат разлике решења једначине 𝑥2 + 2𝑚𝑥 +
𝑚 = 1 најмањи. 

 
2. Ако су за 𝑐 ∈ ℝ решења једначине 𝑥2 + 2𝑥 + 𝑐 = 0 међусобно различити 

реални бројеви, доказати да тада решења једначине 
 

(1 + 𝑐)(𝑥2 + 2𝑥 + 𝑐) − 2(𝑐 − 1)(𝑥2 + 1) = 0 
 
 не могу бити реална. 

 
3. Одредити све 𝑥 ∈ ℝ за које је функција 
  

𝑓(𝑥) =  √𝑥4 − 2𝑥2 + 1 + √𝑥2 + 2𝑥 + 1 
 
растућа. 
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НАШ ГОСТ 
 

НАШ ДОАЈЕН 

 
 

 Познато је да се будући математичари понајвише проналазе међу ус-

пешним такмичарима средњошколацима. А кад они прерасту свој узраст и 

окончају студије, многи се „пребаце на другу страну“ и постану део тима 

који открива и води нове младе таленте. 

 Све то, и не само то, прошао је наш актуелни саговорник. Кад се по-

мену математичка такмичења, рад са талентованим ученицима, вођење наше 

екипе на различита међународна такмичења, публицистички рад и још 

много шта, немогуће је заобићи Ђорђа Дугошију, редовног професора Ма-

тематичког факултета у Београду у пензији. 

 

 Ђорђе, вероватно си још од малих ногу приметио да је матема-

тика „добра ствар“ и да ти баш „лежи“. 
 
 То сам приметио тек при крају ос-

новне школе, јер нисам из математичке по-

родице. Отац ми је био агроном, мајка био-

лог. Био сам одличан ђак из свих предмета.  

 У основној школи сам мислио да ћу 

бити пилот као моји ујаци, у гимназији да 

ћу бити лекар. Много сам волео романе и 

поезију. Читао сам књиге и за време обро-

ка, што никако не треба чинити, јер су књи-

ге храна за душу, а не за тело.  

 Математиком сам се одушевио тек 

на крају основне школе кад сам као награду 

за победу на математичком такмичењу 

добио књигу Ж. Костића „Између игре и 

математике“.   

 Из основне школе остале су ми у 

сећању две педагошке поруке:  
 
 1. Понови зедатак. Ђак који то не уме нема шансе ни да разуме зада-

так, а камоли да га реши! Тек при понављању може да уочи шта је дато и 

шта се тражи и да покуша да пронађе везу имеђу.  
 
 2. Провери решење. Ђаци често питају: „Професоре да ли сам добро 

решио задатак?“ Мој одговор је увек исти: „Ниси! Задатак није урађен док 

не провериш решење.“  

 Провера може бити и тежа него налажење решења. Ово је посебно 

видљиво данас у ери компјутерских програма. У недостатку времена прове 

 



59 

ДОКАЗ БЕЗ РЕЧИ 
 

Ненад Стојановић 
 

 Доказ без речи, назив je за методу визуелног „доказивања“ матема-

тичких тврђења. Појавио се у прошлом веку и брзо стекао широку популар-

ност. Представља спој уметности и математике. Бројне речи и ознаке за-

мењује слика која својим садржајем све објашњава. 

 

 
Геометријски ред 

 
 

                   

 

 

∑
1

2𝑘
∞
𝑘=1 =

1

2
+

1

22
+

1

23
+⋯ = 1  
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НАГРАДНИ ШАХОВСКИ ЗАДАТАК 
Тангента 121 - решење 

 

Бели вуче и матира у 3 потеза 

  

 

                            1. Sb6+! ab6 2. De6+! fe6 3. Le6 мат 

 

 
 

НАГРАЂЕНИ 

 

Лука Цветковић, 2. разр. Гимназија „Бора Станковић“, Ниш 

   

 

 

 

 

 

 

 

 

 
 

 



ШАХОВСКА СТРАНА 
 .

И ПОСЛЕ ТАЉА − ТАЉ 
 
 Појава Михаила Таља 50-тих 

година прошлог века, одјек-

нула као права бомба на ша-

ховској сцени. Због неверова-

тног нападачког стила, звали су 

га „гусар из Риге“. Противни-

цима, чак и врхунским велемај-

сторима, сервирао је сложене 

позиције у којима они нису 

успевали да се снађу и, по пра-

вилу, бирали погрешне плано-

ве. А Таљ је у њима био као 

„риба у води“.  

 Овог шаховског генија било 

је јако тешко имитирати, те је 

стога имао мали број наследни-

ка. Један од њих свакако је 

руски велемајстор Александар 

Морозјевич. Из његовог бога-

тог стваралаштва издвојили 

смо неколико упечатљивих ос-

тварења. 

 
 Велемајстор Бологан управо 

је одиграо e4-e3, мислећи да је 

скакач на d4 посредно брањен.  

Морозјевич не мисли тако. 1. 

Td4! Dh1+ 2. Ka2 Dh3 3. Td8 

gh6 4. gh6 Dg4.  

 
А сада 5. Dh8+! Kh8 6. Tf8+ 

Sg8 (Dg8) 7. Le5+ с матом. 

 Кад је Морозјевич у „свом 

елементу“, противнику обично 

нема спаса. Ево шта је задесило 

Ананда (црни) будућег свет-

ског првака. 

 
 Након жртве два пешака, све 

беле фигуре су „узеле на ниша-

н“ црног краља. Следи ватро-

мет 1. Sg6! hg6 2. Lg6! fg6 3. 

Te6 Df7 4. Dd5 Sf5 5. Tf5! и 

црни предаје јер неодбрањиво 

губи даму. 

 У партији из 2004, импреси-

онира енергија којом Морозје-

вич (бели) води одлучујући на-

пад. 

 
 1. Dh4 Lc3 2. h6!. Најважније 

је отварање позиције око црног 

краља. 2. ... fg6. Све остало је 

још горе. На пример, 2. ... hg6 3. 

hg7 Kg7 4. Dh6+ Kf6 (или 4. ... 

Kg8 5. Dh8 мат) 5. Lg5 мат. 3. 

hg7 h5 4. Dg5 Kg7 5. bc3 Lf7 6. 

Dh6+ Kg8 (6. ... Kf6 7. Lg5+ Ke6 

8. Lh3 мат). Даље у „таљев-

ском“ стилу. 7. Th5! gh5 (7. ... 

Le8 8. Dh8+ Kf7 9. Th7+ Ke6 10. 

Lh3 мат) 8. Lb5 ab5 9. Tg1+ 

Lg6 10. Dg6 Kf8 11. Dg8+ Ke7 

12. Tg7+ Kf6 13. Df7 мат. 

  

Почетком 2000-тих холандски 

велемајстор Ван Вели био му је 

скоро „редовна муштерија“.  

 
 Позиција је са турнира у Вајк 

ан Зеу 2001. Очигледно, прет-

ходио је изузетно оштар дуел. 

На потезу је бели. Иако је црни 

(Морозјевич) „краћи“ за 

фигуру, бели мора да тражи 

спас због неактивних топови и 

краља у катастрофалној пози-

цији. Покушава са 1. De6..  

 Међутим, 1. ... Tf5 2. h4 . На 

2. Dd7 Td7 и због мата Tg7, па-

да ловац на f7. 2. ... Ld6 3. Tf1. 

Као и малопре, не иде 3. Dd7. 

 И онда завршни ударац 3. … 

Tg8+! 4. Lg8 Dg7 мат. 

 

НАГРАДНИ ЗАДАТАК 

 
Бели вуче и матира 

 у 3 потеза 
 
Решења слати на адресу: 

vojpet@gmail.com 

Најуспешнији решавачи биће 

награђивани шаховском лите-

ратуром издавачке куће „Ша-

ховски информатор“. 
 

Војислав Петровић 



 

YU ISSN 0354-656X 

  1 Ђорђе Дугошија, Како су настале детерминанте 

13 Александар Миленковић, Ненад Стојановић, Наградни задаци 

33 Владимир Јанковић, Миодраг Живковић,  

 Hello World! – Разлагање у суму египатских разломака 

44 Мирјана Катић, Предлози за други писмени задатак 

51 Војислав Петровић, Наш гост – Наш доајен 

59 Ненад Стојановић, Доказ без речи 

60 Наградни шаховски задатак 

61 Војислав Петровић, Шаховска страна, И после Таља - Таљ 

 


	Spoljne korice 1.pdf (p.1)
	0.pdf (p.2)
	1.pdf (p.3)
	2.pdf (p.4)
	3.pdf (p.5)
	4.pdf (p.6)
	5.pdf (p.7)
	6.pdf (p.8)
	7.pdf (p.9)
	8.pdf (p.10)
	Spoljne korice 2.pdf (p.11)

